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OPTIMIZATION OF THE COI~RESSION OF A 

SPHERICAL I~SS OF GAS 

V. I. Kosarev and A. M. Svalov UDC 533.6.011 

One of the basic problems in the study of combustion processes is that of achieving 
ignition conditions -- high enough temperature and density of the combustible medium so that 
the combustion reaction, once having been started, can effectively continue. To satisfy the 
ignition conditions it is necessary to impose conditions on the characteristics of the energy 
source which initiates the reaction. The description of processes taking place during com- 
bustion requires taking account of various physical factors such as heat conduction, degener- 
acy effects, radiation, etc., and the fact that the material being compressed may be a two- 
component medium -- a plasma. Therefore, an analytic study of the problem in the whole 
volume is practically impossible, and tile problem must be separated into parts, each of ~ich 
can be described by a simpler mathematical model, with a subsequent numerical verification 
of the liraits of admissibility of the simplifying assumptions. Thus, the compression of a 
material is satisfactorily described by the action of a piston on an ideal compressible fluid 

[1-7]. ~le compression efficiency is commonly characterized by the quantity <pR> =.i pdr, 
0 

where p is the density of the medium being compressed. It is expedient to divide the solu- 
tions under study into two groups; the first group consists of the solutions in which <pR> 
reaches the required values when constant input data are used [1-3], and the second group 
includes all the remaining solutions. It is natural to require simple initial distributions 
of the hydrodynamic functions so that the proposed schemes can be realized practically by 
means available. However, taking account of the advance of technical feasibilities and cer- 
tain advantages of solutions of the second group, it is necessary to study all schemes which 
ensure the achievement of large values of <pR>. Cvalov [7] showed that for special distribu- 
tions of the initial values solutions exist for which <pR> becomes infinite at a certain 
instant for a finite mass and a finite expenditure of energy in the compression, whereas the 
use of a compression scheme with a uniform deformation [4-6] leads to a linear dependence of 
<9R> on the added energy for y =5/3. The solutions given in [7] are self-similar near the 
origin, and satisfy a system of ordinary differential equations [8]. This system depends 
on two parameters ~ and 6, and the unknown functions can be written in the form 

= r/(bt~),  zOO = y P ( E ) / R ( % ) ,  • = (s - -  2 + 6 (k  + 1))/y, 
where u, p, and p are respectively the velocity, density, and pressure of a particle, r and 
t are space and time coordinates, and a, b, k, s, • and ~ are arbitrary constants. 
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Ale values of the parameters • and ~ for which there are self-similar solutions having 
the above property were determined in [7]. The solutions of this class ensure arbitrarily 
large values of the compression efficiency index <pR> in the compression of a finite mass, 
and a finite expenditure of energy, and are optimal with respect to energy expenditure as 
compared with other types of solutions leading to superhigh compression. 

The question naturally arises of how taking account of the accompanying physical phenom- 
ena such as heat conduction, etc., affects the character of the compression. Since it is 
difficult to take account of these factors analytically, we performed numerical studies of 
compression schemes based on the solutions mentioned. Another reason for making numerical 
calculations was to find how the characteristics of the initial distribution and the law of 
motion of the compressing piston influence the compression efficiency. 

In the final analysis we started from the fact that numerical experiments permit an 
estimate of the practical significance of self-similar compression, since if deviations from 
it either as a result of taking account of additional physical factors or because of viola- 
tion of the required initial distributions leads to a considerable decrease in the compres- 
sion efficiency, this will indicate the exceptional character of self-similar compression, 
its weak stability, and the difficulty of its realization. 

We chose a solution describing the compression of a dense target for numerical study. 
This solution is represented by an integral curve in the plane of the self-similar variables 
(z, V) which passes through the two singular points described in [7]. 

Ate numerical solution of the problem is reduced to the following: 

the integration of ordinary differential equations which are satisfied by the self-simi- 
lar solution in order to calculate the initial distributions of gasdynamic functions. 
In the neighborhood of the singular points the asymptotic formulas in [7] are used to 
obtain the solution; 

the calculation of the trajectory and the conditions at the piston which close the prob- 
lem for the gasdynamic equations in Lagrangian variables; 

the numerical solution of the last problem, i.e. the integration of the system of par- 
tial differential equations. 

It is known that a self-similar solution determines a certain class consisting of an 

infinite set of solutions. Calculations were performed for the following specific scales 
of the compression process studied: 

Ro =i0 -= cm -- initial radius of compressible target, 
(A) T =10 -8 sec -- time during which collapse is reached in the self-similar solution 
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(the characteristic scales of the other gasdynamic parameters were as follows: density p 
102 g/cm 3, temperature T ~i0 -4 keV, speed u ~i05 cm/sec); 

(B) Ro =10 -2 cm, T =10 -I~ sec (p %1 g/cm 3, T~I keV, u %107 cm/sec). 

We used the ideal gas model with values of the physical constants for a DT sphere. 

We present selected results of the calculations performed. Curves 1-4 of Fig. 1 show 
the distributions of gasdynamic parameters at times t =0, 0.52 xl0 -8, 0.81 xl0 -s, and 0.99 x 
I0 -B sec respectively. For the same orders or magnitude the computed values for cases (A) 
and (B) become indistinguishable, and are plotted as single curves. 

This clearly shows that the calculated solution is self-similar at each instant and at 
each point. The calculations showed, however, that the singularities of the initial distri- 
butions near the center of the compressible sphere are most important in maintaining the self- 
sit, far character of the compression shown by the dashed parts of the curves 1 in Fig. I. 
Of the 60 nodes at which calculations were made, 30 were near the center. At these nodes 
the singularities were taken into account by calculating the initial values from the asympto- 
tic formulas of [7]. 

Figure 2 illustrates the conditions at the "piston" -- the outer boundary of the region 
calculated. Here t' is the "self-similar" time. The graphs are plotted in relative units. 
Figure 2 also shows the resulting dependence of <pR> for the self-similar regime. The points 
mark the results of a numerical solution of the gasdynamic equations. Of course infinite com- 
pression is not reached in the calculated data. The maximum value of the ratio of <pR> to 
its initial value~60. Nevertheless, the numerical and self-similar solutions clearly agree, 
both with respect to the integral characteristic <pR> and with respect to the parameters at 
the piston. 

One of the basic results of the calculations performed is the verification of the effect 
of heat conduction on the compression regimes studied. Heat transfer was taken into account 
by using the model in [9], taking the thermal conductivity as a power function of the temper- 
ature. 

It was found that the distributions of the gasdynamic parameters remain as before (Fig. 
I) even in case (B) when the characteristic values of the temperature are rather high: i.e. 
the self-similar regime studied is determined mainly by the hydrodynamics over a rather wide 
range of scales of the process: (A), (B). In principle this conclusion was to be expected. 
On the basis of the scales shown it is easy to obtain a rough estimate of the significance 
of the separate terms in the equations describing the phenomena in question. The conclusion 
stated follows from this estimate. The numerical results confirm its validity for a strong 
nonlinearity of the actual heat transfer process. 

~le following results relate to a study of the effect on the compression characteristics 
of the initial distributions and conditions at the piston which differ from self-similar. 

Figure 3 shows the time dependence of <pR> for various initial conditions: P~, T~, v~, 
where the subscript k indicates a distribution of initial values over the cells of the dif- 
ference net. The values of the pressure PB on the piston, which serves as a boundary condi- 
tion for the solution of the gasdynamic equations, were varied. The curves in Fig. 3 
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correspond to the following values of the parameters: i) initial values and pressure on the 
piston correspond to self-similar compression; 2) T~ =i0 -4 keV, P~ =250 g/cm 3, v~ and PB cor- 
respond to self-similar compression; 3) ~=i0-" keV, p~ =250 g/cm 3, v~ from the self-similar 
solution, PB =P. =5.37 xl09 Pa; 4) T~ and p~ from the self-similar solution, v~ =0, PB =P.; 
5) T~ =i0 -" keY for k~25, for k <25 the self-similar distribution, 02 =250 g/cm 3, v~ cor- 
responds to the self-similar regime, PB =P.; 6) differs from 5 only in the initial tempera- 
ture distribution: T~=I0 -s keV for k <25, 10 -4 keV from k~25. The value P. =5.37 • 109 Pa 
used here as the limiting pressure was chosen so that the work performed by the piston in 
this case, i.e. the energy added from the outside, is equal to the corresponding work in self- 
similar compression. The results show clearly the important effect of the particular charac- 
ter of the initial distributions near the center of the compressible sphere on the compres- 
sion efficiency. On the other hand, it is clear that in retaining the self-similar initial 
velocity distribution, the modeling of initial values of the temperature by a simple power 
function for a uniformly distributed initial density leads to a high compression efficiency, 
which is of definite interest in view of the above remark on the possibility of the practi- 
cal realization of these or other compression schemes. Figure 4 shows the time dependence 
of <pR> for various values of the pressure on the piston: I) self-similar compression; PB = 
6.63 xl0", 8.0 xl09, i0.0 xl0 g, 15.0 xl09, 50.0 xl09, I00.0 xl09 Pa for curves 2-7 respec- 
tively; 6' and 7' are the continuations of curves 6 and 7 for larger values of t. The ini- 
tial values for all cases are distributed according to the self-similar law. It is charac- 
teristic that at a certain instant the degree of compression reaches a very high maximum in 
all the regimes shown. The maximum of <pR> increases markedly with an increase in external 
pressure, which is obviously related to the increase in the energy added to the target as a 
result of external compressive forces. For PB =15, 50, and 100 xl09 Pa, a second maximum 
occurs as a result of shock compression in these cases. 

The results obtained enable us to draw certain conclusions about the influence of the 
added energy on the compression efficiency in the regimes studied. Figure 5 shows the depen- 
dence of these values of <pR> on the energy added to the target: i) self-similar compres- 
sion; PB =5.37 xl0 a, 8.0 xl09, i0.0 xl09, 15.0 xl09 Pa for curves 2-5 respectively. A char- 
acteristic feature of the self-similar regime investigated is the presence of a sharp peak 
in the distribution of <OR> at a certain value of the energy (theoretically the value of 
<pR> should become infinite at this point). This characteristic is preserved also for a 
constant pressure on the piston and for self-similar initial distributions of the functions; 
the only changes are in the maximum value of<<pR> and the point at which it is reached. 

For certain exact solutions of the gasdynamic equations the function <pR> (E) can be 
expressed in explicit form. For example, for solutions with uniform information used in 
modeling compression phenomena [4-6], this function is linear. For the case studied in [6] 
it has the form (y =5/3) 

<pR> = I E 
4(18=)~/~ SM~/8. ( ! )  

The linear form of the function <oR> (E) is preserved also when the compression process is 
described approximately by the formulas of uniform adiabatic flow: 
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<OB> ~-fi~] SM~/v (2) 

Here E, If, and S are respectively the energy, mass, and entropy function (S =P/o Y) of the 
target. 

As one might have expected, the degree of compression is characterized by the entropy 
of the system, and in the limit the compression may be indefinitely high for a finite energy 
of the system if S =0. A characteristic of the solutions studied in the present paper is the 
fact that the function S actually vanishes, but only at the center of the target. It 
remained finite when averaged over the mass. The straight lines in Fig. 5 represent Eq. (2) 
for various values of S (the subscripts indicate the number of the computational cell which 
corresponds to this value); the points mark the straight line corresponding to the value of 
S, averaged over the mass, for the solution studied. It is clear from Eq. (i) that the coef- 
ficient of E for compression With a uniform deformation is about 6.35times smaller than the 
coefficient in (2). Thus, if one admits the possibility of generating arbitrary input data, 
the self-similar solutions investigated describe a compression scheme leading to the required 
value of the compression efficiency which is more economical with respect to energy expendi- 
ture than those in [4-61. 

~le nearly self-similar solutions studied in the present paper with initial distribu- 
tions simpler than self-similar and with constant pressure on the compressSng piston also 
have this property. 
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